On a new generalization of Fibonacci hybrid numbers
نویسندگان
چکیده
The hybrid numbers were introduced by Ozdemir [9] as a new generalization of complex, dual, and hyperbolic numbers. A number is defined $$k=a+bi+c\epsilon +dh$$ , where a, b, c, d are real $$ i,\epsilon ,h$$ operators such that $$i^{2}=-1,\epsilon ^{2}=0,h^{2}=1$$ $$ih=-hi=\epsilon +i$$ . This work intended an attempt to introduce the bi-periodic Horadam which generalize classical We give generating function, Binet formula, some basic properties these Also, we investigate relationships between generalized Fibonacci Lucas
منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
On the Fibonacci Numbers
The Fibonacci numbers are terms of the sequence defined in a quite simple recursive fashion. However, despite its simplicity, they have some curious properties which are worth attention. In this set of notes, we will look at some of the important features of these numbers. In the first half of the notes, our attention shall be paid to the relationship of the Fibonacci numbers and the Euclidean ...
متن کاملEnergy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملA New Generalization of Fibonacci Sequence & Extended Binet’s Formula
Consider the Fibonacci sequence {Fn}n=0 having initial conditions F0 = 0, F1 = 1 and recurrence relation Fn = Fn−1 + Fn−2 (n ≥ 2). The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this article, we study a new generalization {qn}, with initial conditions q0 = 0 and q1 = 1 which is generated b...
متن کاملA New Generalization of Fibonacci Sequence and Extended Binet’s Formula
Consider the Fibonacci sequence {Fn}n=0 with initial conditions F0 = 0, F1 = 1 and recurrence relation Fn = Fn−1 + Fn−2 (n ≥ 2). The Fibonacci sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this article, we study a new generalization {qn}, with initial conditions q0 = 0 and q1 = 1, which is generated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Pure and Applied Mathematics
سال: 2022
ISSN: ['0019-5588', '0975-7465', '2455-0000']
DOI: https://doi.org/10.1007/s13226-022-00264-3